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INTRODUCTION 

Wheat (Triticum aestivum) is a self-pollinated 

crop that belongs to poaceae family. It is 

considered as ‘stuff of life’ because it feeds 

large population and sustain wellbeing of 

human kind. (Sharma et al., 2019). India, 

stands second largest in wheat production. But 

the rising temperature and climatic changes 

have imposed challenging ventures on the 

wheat productivity. (Ahmed et al., 2017).
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ABSTRACT 

Wheat (Triticum aestivum L.) is one of the most important cereal crops in many countries 

including India. Changing climate not only threatened crop physiology but also limits global 

productivity. Drought is one of the major worldwide stresses that cause devastating effects on the 

genotype of wheat. The two-year investigation was aimed at pot house of Baba Mastnath 

University, Rohtak to enumerate the effects of drought stress on wheat chlorophyll content, 

chlorophyll stability index and membrane stability index. The implication of drought on wheat 

genotype showed a reduction in chlorophyll content, chlorophyll stability index, membrane 

stability index, biomass per plant and yield per plant as compared to the control condition. 

Under drought stress, the mean decrease in chlorophyll content ranged from 34.0 to 10.1 mg/g 

FW for chlorophyll ‘a' and 13.5 to 5.0 mg/g FW for chlorophyll ‘b'. The chlorophyll stability 

index reduced from 54.0 to 42.8 percent, while the membrane stability index also declined from 

85.7 to 37.4 percent. The onset of the drought lowered biomass and yield per plant, respectively, 

from 55.4 to 26.2 g and 2.1 to 1.6 g. Wheat genotypes C-306, DHTW-60 followed by HD-3086 

and PBW-771 have been found promising in all the tested traits (viz., chlorophyll content, 

chlorophyll stability index, membrane stability index, biomass per plant and yield per plant) and 

genotypes, which can be used for cultivation under drought influenced area. 
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Environmental problems like intensive use of 

natural resources, rapidly increasing 

population furthers adds havoc for crop 

productivity and management. (Bray et al., 

2000). Wheat genotype is affected adversely 

by the stress like, high temperature and 

drought. Drought stress is one of the primary 

abiotic stress that affects the crop majorly. It 

affects several plant processes like 

photosynthetic rate, stomatal conductance, 

metabolic activity, ionic conductance, 

membrane integration, ROS generation, grain 

filling rate (Sangwan et al., 2018). Therefore, 

priority should be given to minimize the 

detrimental effects of drought.  

 Under water deficit condition 

chlorophyll content decreases because drought 

stress can be either excess heat or water deficit 

condition (Ram et al., 2017). High temperature 

stress at anthesis also causes membrane 

instability (CMS) as fluidity of membrane 

causes poor conductance and increases the 

permeability (Blum, 2011). Elevated 

temperature above 30 ℃ causes disorientation 

of lamellar structure of chloroplast and 

photophosphorylation to cease. (Lidon, 2009). 

The amount of leaf chlorophyll pigment is 

indicator of photosynthetic capacity of plant 

tissue. Being sensitive to temperature it alters 

integrity and functions of membranes resulting 

in tertiary and quaternary structure of proteins 

(Sallam et al., 2019), as the thylakoid 

membrane disintegrates with cell dehydrations 

(Maghsoudhi et al., 2015). The experiment 

was conducted to estimate chlorophyll content 

and membrane stability in wheat genotypes. 

 

MATERIALS AND METHOD 

Seeds of selected ten wheat genotypes grown 

under different level of drought condition (viz., 

Control (all recommended irrigation), Drought 

at days to anthesis, Drought at both crown root 

initiation and anthesis and Complete drought 

(no irrigation throughout the crop session). 

Two year (2019-21) experiment was planned 

with complete randomized design (CRD) in 

the pot house and laboratory. Earthen pots 

were filled with 13.5 kg farm soil and watered. 

Sowing was completed when pots soil 

maintained field capacity. 

1. Chlorophyll was estimated from main plant 

flag leaf; as per method of Hiscox and 

Israelstam, (1979) adapted by Richardson et al. 

2002 and calculations made by Arnon`s 

formula.

 

Chlorophyll ‘a’ (mg/g FW) = [12.7 (A663) ‐ 2.69(A645)] × (V/1000×W) 

Chlorophyll ‘b’ (mg/g FW) = [22.9 (A645) ‐ 4.68 (A663)] × (V/1000×W) 

Total Chlorophylls= [20.2 (A645) + 8.02 (A663)] × (V/1000×W) 

Where; V= volume of extract (ml) W= fresh weight of sample (g) 

 

2. Chlorophyll stability index was calculated by the method adopted by Sawhney and Singh, (2002) 

using following formula. 

CSI% = (Total Chlorophyll under stress/Total Chlorophyll irrigated condition as control) × 

100. 

3. Cell Membrane Stability was calculated by using Dionisio-Sese and Tobita, 1998 method. 

CMS%= 1-[1-(T1/T2)/1-(C1/C2)] × 100 

 

Where T and C refer to mean of treatment and 

controls, respectively, and the subscripts 1 and 

2 refer to initial and final conductivities, 

respectively. 

4. Biomass (g) per plant: At maturity, plants 

were cut from the base of the stem and 

weighed in gram using an electrical weighing 

balance, with an average taken. 

5. Grain yield (g) per plant: After harvesting 

and threshing the seeds, grain yield was 

measured. The threshed grains were cleaned, 

and the yield in gram was recorded. 

 

RESULTS AND DISCUSSION 

Chlorophyll Contents (mg/g FW)- The 

implication of water stress at every stage of 
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observation showed a remarkable reduction in 

chlorophyll content (34.0-10.1 Chl ‘a’; 13.5-

5.0 Chl ‘b’). Tables 1 & 2 showed a reduction 

in chlorophyll ‘a’ & chlorophyll b’ content 

respectively. Mean reduction in genotype 

ranged between 34.0 to 10.1 mg/g FW 

(Chlorophyll ‘a’) and 13.5 to 5.0 mg/g FW 

(Chlorophyll ‘b’). Reduction in mean due to 

drought application varied between 25.2 to 

17.6 mg/g FW (Chlorophyll ‘a’) and 12.3 to 

5.8 mg/g FW (Chlorophyll ‘b’). Interaction 

effect between drought treatment and wheat 

genotype was also found significant. Genotype 

C-306, DHTW-60 followed by DBW-621-50 

showed maximum in chlorophyll ‘b’ content 

whereas WH-1105 and WH-147 found 

minimum in chlorophyll content. This 

specifies that the genotype differed in the 

water under conditions of the study and in 

their reflexes. Present investigation supported 

by the study of Shoaib et al. 2016; Ram et al. 

2017; Sharma et al. 2019; &  Zafar et al. 2020.

 

Table1. Effect of water stress on chlorophyll ‘a’ content (mg/g FW) in wheat genotypes 

Genotypes Control CRI Ant CRI+Ant CD Mean (T) 

C-306 37.1 37.0 19.0 18.8 12.7 24.9 

DBW-621-50 36.1 35.7 17.6 17.4 15.5 24.5 

DHTW-60 38.2 38.0 19.7 19.4 10.7 25.2 

HD-2967 30.7 29.9 14.0 13.5 11.8 20.0 

HD-3086  36.8 36.6 18.0 17.5 10.0 23.8 

PBW-771 34.9 34.5 15.9 15.5 9.8 22.1 

RAJ-3765 31.4 30.4 14.1 14.0 8.5 19.7 

WH-1105 29.1 29.0 11.2 10.8 7.9 17.6 

WH-147 30.1 29.8 12.0 11.8 7.6 18.3 

WH-730 35.2 35.0 16.5 16.2 6.8 22.0 

Mean (G) 34.0 33.6 15.8 15.5 10.1 21.8 

Factors C.D. SE(d) SE(m) 

Treatments (T) 0.337 0.170 0.120 

Genotypes (G) 0.476 0.240 0.170 

Interaction (G×T) 1.065 0.536 0.379 

 

Table2. Effect of water stress on chlorophyll ‘b’ content (mg/g FW) in wheat genotypes 

Genotypes Control CRI Ant CRI+Ant CD Mean (T) 

C-306 17.6 15.0 12.7 8.0 8.2 12.3 

DBW-621-50 16.2 15.1 15.5 7.0 7.1 12.2 

DHTW-60 15.9 13.5 10.7 6.5 6.8 10.7 

HD-2967 15.1 12.4 11.8 6.0 6.1 10.3 

HD-3086  13.7 10.7 10.0 5.5 5.9 9.2 

PBW-771 13.0 10.0 9.8 5.0 5.2 8.6 

RAJ-3765 11.9 8.8 8.5 2.2 2.4 6.8 

WH-1105 11.1 7.2 7.9 1.5 1.9 5.9 

WH-147 10.2 8.2 7.6 1.3 1.7 5.8 

WH-730 9.8 7.6 6.8 1.0 1.2 6.3 

Mean (G) 13.5 10.8 10.1 4.4 5.0 8.8 

Factors C.D. SE(d) SE(m) 

Treatments (T) 0.136 0.069 0.049 

Genotypes (G) 0.193 0.097 0.069 

Interaction (G×T) 0.431 0.217 0.153 

 

Chlorophyll stability index (%) - The stability 

of chlorophyll is affected by drought at any 

point of the wheat genotype (table. 3). When 

compared to the control environment, the 

wheat genotype displayed a substantial 

reduction in chlorophyll stability under 

drought conditions. For various drought stress 

conditions, the average chlorophyll stability 

index ranged from 73.7 to 62.6 percent, while 

genotypes ranged from 85.7 to 72.9 percent. 

There was also a significant interaction effect 

between stress environments and genotypes. 
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Genotype DBW-621-50 and DHTW-60 were 

found to have maximums in the chlorophyll 

stability index under every level of stress 

application while WH-1105 and WH-147 were 

found minimum with respective to stress. Our 

results are according to the result of Sharma et 

al. (2019); Zafar et al. (2020) and Qureeshi et 

al. (2020). 

 

Table 3. Effect of water stress on chlorophyll stability index (%) in wheat genotypes 

Genotypes  Control CRI Ant CRI+Ant CD Mean (T) 

C-306 85.6 81.7 77.7 72.0 40.9 71.6 

DBW-621-50 86.4 84.3 74.6 71.3 51.8 73.7 

DHTW-60 88.5 86.2 77.6 74.2 36.3 72.6 

HD-2967 84.1 79.1 74.6 67.8 45.9 70.3 

HD-3086  87.2 84.6 79.3 71.8 36.4 71.9 

PBW-771 89.2 85.7 78.9 71.0 37.8 72.5 

RAJ-3765 84.4 78.0 69.1 69.1 34.5 67.0 

WH-1105 84.1 76.6 65.0 65.0 32.9 64.7 

WH-147 80.8 77.2 62.1 62.1 30.8 62.6 

WH-730 86.5 84.8 70.4 65.6 26.9 66.8 

Mean (G) 85.7 81.8 72.9 69.0 37.4 69.4 

Factors C.D. SE(d) SE(m) 

Treatments (T) 0.915 0.461 0.326 

Genotypes (G) 1.295 0.652 0.461 

Interaction (G×T) 2.895 1.457 1.033 

 

Membrane stability index (%) - The mean 

reduction in membrane stability index caused 

by drought stress ranged from 54.0 to 42.8 

percent, while treatment-related reductions 

ranged from 63.9 to 41.5 percent. The 

membrane stability index was found to be 

highest in genotype C-306, DHTW-60, and 

PBW-771 at all levels of stress, while WH-

1105 and WH-147 were found to be lowest 

with respect to stress. Important interaction 

associations between stress environment and 

wheat genotype were also observed. This 

means that the genotypes varied in the water 

stress and in their reflexes throughout the 

study. Experiments by Rehman et al. 2016; El-

Basyoni et al. 2017; Sangwan et al. 2018; 

Sharma et al. 2019; Qureeshi et al. 2020 

followed up the results of the preset 

investigation. 

 

Table 4. Effect of water stress on membrane stability index (%) in wheat genotypes 

Genotypes Control CRI Ant CRI+Ant CD Mean (T) 

C-306 72.4 71.0 67.8 55.2 53.2 63.9 

DBW-621-50 58.4 45.5 46.9 51.4 49.8 50.4 

DHTW-60 65.1 68.9 57.8 50.6 48.6 58.2 

HD-2967 34.8 31.5 36.9 48.3 45.5 39.4 

HD-3086 52.3 40.6 46.4 47.5 46.6 46.7 

PBW-771 47.8 60.6 54.6 45.3 43.4 50.3 

RAJ-3765 49.4 42.8 35.3 41.5 38.7 41.5 

WH-1105 51.7 38.9 38.6 40.5 39.0 41.8 

WH-147 50.3 45.9 42.6 36.3 32.6 41.6 

WH-730 57.3 45.4 43.5 33.2 30.5 42.0 

Mean (G) 54.0 49.1 47.0 45.0 42.8 47.6 

Factors C.D. SE(d) SE(m) 

Treatments (T) 0.609 0.306 0.217 

Genotypes (G) 0.861 0.433 0.306 

Interaction (G×T) 1.924 0.968 0.685 
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Biomass per plant - Drought application 

triggered a sharp reduction in biomass per 

plant in all genotypes 61.6 to 28.6 g, while 

different drought environment ranged 

reduction from 55.4 to 26.2 g. At all levels of 

drought environment, biomass was found to be 

highest in genotype DHTW-60 (61.6 g) and C-

306 (56.2 g), while WH-1105 (28.6 g) was 

found to be lowest (Table. 5). There was also a 

significant correlation between stress 

environment and wheat genotype was found. 

Similar findings have also been reported by 

various workers Chen et al. (2015); Saxena et 

al. (2016); Dwivedi et al. (2017). Wang et al. 

(2017) reported that biomass per plant in 

wheat depends on time and availability water. 

 

Table 5. Effect of water stress on biomass per plant (g) in wheat genotypes 

Genotypes  Control CRI Ant CRI+Ant CD Mean (T) 

C-306 75.1 73.5 55.7 39.3 37.4 56.2 

DBW-621-50 61.5 59.9 48.6 29.7 27.8 45.5 

DHTW-60 76.1 77.4 65.3 45.4 43.6 61.6 

HD-2967 44.7 43.2 38.9 21.5 19.7 33.6 

HD-3086  65.9 64.3 49.6 36.6 34.7 50.2 

PBW-771 49.8 48.5 38.6 25.9 24.2 37.4 

RAJ-3765 44.8 42.5 34.4 24.5 22.1 33.7 

WH-1105 41.0 38.6 28.8 15.2 19.5 28.6 

WH-147 43.4 42.5 28.9 18.8 17.5 30.2 

WH-730 51.7 49.5 30.6 26.7 15.8 34.9 

Mean (G) 55.4 54.0 42.0 28.4 26.2 41.2 

Factors C.D. SE(d) SE(m) 

Treatments (T) 0.566 0.285 0.201 

Genotypes (G) 0.800 0.403 0.285 

Interaction (G×T) 1.790 0.901 0.637 

 

Grain yield per plant- Drought caused a 

significant decrease in biomass per plant in all 

genotypes, ranging from 2.1 to 1.6 g, with 

varying drought environments resulting in 

reductions ranging from 2.7 to 1.2 g. 

Genotypes DHTW-60 (2.7 g) and C-306 (2.4 

g) had the largest biomass at all stages of 

drought, while genotype WH-1105 (1.2 g) had 

the lowest (Table. 6). There was a close 

association between stress environment and 

wheat genotype was also discovered, with 

major similarities. Munjal & Dhanda, (2016); 

Zampieri et al. (2017); Mishra et al. (2017); 

Ram et al. (2017) they find similar result under 

water stress condition. 

 

Table 6. Effect of water stress on grain yield per plant (g) in wheat genotypes 

Genotypes  Control CRI Ant CRI+Ant CD Mean (T) 

C-306 2.7 2.5 2.4 2.3 2.1 2.4 

DBW-621-50 2.2 2.1 2.0 1.7 1.8 1.9 

DHTW-60 3.0 2.9 2.7 2.6 2.2 2.7 

HD-2967 1.8 1.5 1.5 1.3 1.3 1.5 

HD-3086  2.6 2.5 2.5 2.3 1.9 2.3 

PBW-771 2.0 2.0 1.9 1.7 1.4 1.8 

RAJ-3765 1.9 1.8 1.8 1.5 1.3 1.6 

WH-1105 1.2 1.2 1.2 1.2 1.1 1.2 

WH-147 1.5 1.4 1.3 1.2 1.2 1.3 

WH-730 2.2 2.1 2.0 1.5 1.5 1.9 

Mean (G) 2.1 2.0 1.9 1.7 1.6   

Factors C.D. SE(d) SE(m) 

Treatments (T) 0.028 0.014 0.010 

Genotypes (G) 0.040 0.020 0.014 

Interaction (G×T) 0.089 0.045 0.032 

 
CONCLUSION 

Drought affects a large area which directly 

affects crop yield. According to the current 

investigated genotypes, DBW-621-50 and 

DHTW-60 were found to be promising under 

drought stress conditions. Therefore, genotype 
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DBW-621-50 and DHTW-60 can be used for 

cultivation under drought-prone areas. 
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